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Abstract

This paper presents a collection of numerical simulation data which provides a reference for the assessment of var-

ious statistical/stochastic models in incompressible homogeneous particle-laden turbulent flows. Four different homo-

geneous flow configurations are studied, namely, homogeneous shear flow, homogeneous plane strain flow,

homogeneous axisymmetric expansion and contraction. An Eulerian–Lagrangian formulation is used for the two-phase

flow simulation. A Fourier pseudospectral method is used for the solution of the Eulerian carrier-phase equations with-

out resorting to any turbulence model. The Lagrangian equations for the dispersed phase are integrated using a mod-

ified Stokes drag. For the shear flow, both monodispersed and polydispersed particles have been considered. In this

paper, only the results that are relevant for assessment of various statistical models for both the fluid and dispersed

phases are presented.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The objective of this work is to provide a comprehen-

sive data bank from numerical simulation of a variety of

incompressible homogenous particle-laden turbulent

flows, which can be used for the assessment of statisti-

cal/stochastic models. The applicability of similar data

for such model validations has been demonstrated in

our previous works in, for example, Reynolds average

Navier–Stokes (RANS) [1], probability density function

(PDF) [2], and stochastic [3] modeling. In this study, we

use direct numerical simulation (DNS) for the carrier

phase in an Eulerian frame whereas the particles are
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tracked in a Lagrangian frame. A modified Stokes drag

is used to describe the coupling between the two phases.

Four different anisotropic particle-laden turbulent

flows with low volume fraction and high density ratio

are considered. The first is a homogeneous shear flow

for which the instantaneous carrier-phase velocity is

described as

bU a ¼ U 1;2x2da1 þ ua; a ¼ 1; 2; 3. ð1Þ

Here,bdenotes the instantaneous quantity, ua is the fluc-
tuating carrier-phase velocity, dij is the Keroneker delta

function, and U1,2 = dU1/dx2 = constant, with x1 and x2
indicating the streamwise and cross-stream flow direc-

tions, respectively. The mean velocity U a ¼ h bU ai is

calculated by (Eulerian) ensemble averaging (denoted

by h i) over the number of grid points. It is noted

that the homogeneous shear flow is identified by one

shear component in the mean velocity gradient tensor.
ed.
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Nomenclature

Bij coordinate transformation tensor

dp particle diameter

f ð1þ 0.15Re0.687p Þ
k turbulence kinetic energy

mp particle massbP instantaneous pressure

Re0 box Reynolds number

Rep particle Reynolds number

Sij strain rate tensor

St non-dimensional timebU i instantaneous velocity of the carrier phasebU �
i instantaneous velocity of the carrier phase at

the particle position

Ui carrier-phase mean velocity

ui carrier-phase fluctuating velocitybV i particle instantaneous velocity

vi particle fluctuating velocity

Xi particle position

Greek symbols

qp particle density

l dynamic viscosity of the carrier fluid

Um particle mass loading ratio

ni moving coordinate

� isotropic rate of dissipation

sp non-dimensional particle time constant
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In contrast, the other flows considered in this study are

formed with only normal components of the mean

velocity gradient tensor without any shear component.

These include three flows: plane strain, axisymmetric

contraction, and axisymmetric expansion, with an

instantaneous carrier-phase velocity described as

bU a ¼ U a;axa þ ua; a ¼ 1; 2; 3. ð2Þ

where Ua,a = constant with no summation over Greek

indices. The intensity (or rapidity) of the mean strain

rate, referred to as ‘‘equivalent mean strain rate [4]’’,

can be measured in terms of S = (SijSij/2)
1/2 where

Sij = (Ui,j + Uj,i)/2 and summation over repeated indices

is implied. We have for shear flow

Sij ¼ S

0 1 0

1 0 0

0 0 0

0
B@

1
CA; ð3Þ

for plane strain flow

Sij ¼ S

1 0 0

0 �1 0

0 0 0

0
B@

1
CA; ð4Þ

for axisymmetric contraction flow

Sij ¼
2Sffiffiffi
3

p
1 0 0

0 �1=2 0

0 0 �1=2

0
B@

1
CA; ð5Þ

and for axisymmetric expansion flow

Sij ¼
2Sffiffiffi
3

p
�1 0 0

0 1=2 0

0 0 1=2

0
B@

1
CA. ð6Þ

These simple homogeneous flows can approximate vari-

ous regions in a more complex flow. For example, the
circulation zone behind the step in a backward-facing

step flow can be approximately represented by a plane

strain flow, while the shear layer formed between the

higher and lower halves of the channel after the step,

may be approximated by a homogeneous shear flow.

As a result, these flows can be used for a preliminary

assessment of various turbulence models, prior to their

implementations in more realistic flows with complex

geometries. There are also some subtle differences

among the aforementioned homogeneous flows that

could be utilized for assessing various aspects of the

models. For example, in the plane strain and axisymmet-

ric flows, there is a mean velocity difference between the

carrier and dispersed phases. This creates an opportu-

nity to address several fundamental issues in two-phase

turbulent flows, such as the so-called ‘‘crossing trajecto-

ries effect’’. Further, although the carrier phase is incom-

pressible, the dispersed phase behaves as ‘‘compressible’’

and its volume changes as a function of time. Capturing

the fundamental phenomena such as these could be con-

sidered as stringent tests for statistical models which are

often derived following a long and tedious mathematical

procedure while making many simplifying assumptions.

In the next section the formulation and numerical is-

sues are discussed. In Section 3 the results of the simula-

tions are presented, followed by some concluding

remarks in Section 4.
2. Formulation

The carrier and dispersed phases are simulated in the

Eulerian and Lagrangian frames, respectively. All the

variables are normalized using reference scales for length

(L0), velocity (U0), and density (q0). The length scale is

conveniently chosen such that the normalized volume

of the simulation box is (2p)3, and the fluid density is
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used as the scale for density. The velocity scale is found

from the box Reynolds number, Re0 = q0U0L0/l which

is specified based on the grid resolution adopted for

the simulations. The governing equations are described

by the instantaneous continuity and momentum equa-

tions for the fluid

o bU j

oxj
¼ 0;

o bU i

ot
þ oð bU i

bU jÞ
oxj

¼ � obP
oxi

þ 1

Re0

o2 bU i

oxj oxj

� f
DV

Xnp mpð bU �
i � bV iÞ
sp

; ð7Þ

along with the Lagrangian equations of motion for a

single particle

dX i

dt
¼ bV i;

dbV i

dt
¼ f

sp
ð bU �

i � bV iÞ. ð8Þ

Here * denotes the carrier-phase variable evaluated at

the particle position. The nondimensional particle time

constant (based on the Stokesian drag for a spherical

particle) is defined as sp ¼ Re0qpd
2
p=18 where qp and dp

are the particle density and diameter, respectively. The

function f ¼ 1þ 0.15Re0.687p in (7) and (8), represents a

correction to the Stokes drag relation at high particle

Reynolds number ðRep ¼ Re0dp j U �
i � V i j6 1000Þ.

The last term in (7) describes the effects of the particles

on the fluid (i.e. the two-way coupling). This Eulerian

source/sink term is calculated from the Lagrangian par-

ticles by summing over the number of the particles, np,

present in the Eulerian cell of volume DV.
The primary objective of the simulations is to furnish

statistics of the fluctuating velocities for the assessment

of statistical models. This, however, requires the knowl-

edge of the mean velocities of the particle phase—note

that the mean velocity of the carrier phase is known a

priori. While this information can be provided by aver-

aging over various realizations as well as the homoge-

neous (x3) direction of the flow, the number of the

realizations (needed to provide accurate and meaningful

statistics) is estimated to be very large [5]. Therefore, we

adopt an alternate approach to provide analytical solu-

tions for the mean velocity of the particle phase. The

approach has been described in detail in our previous

works [6,7]; here we provide only a brief description,

mainly to highlight the limitations imposed on the flows

that can be considered.

We begin by ensemble averaging the particle momen-

tum equation (8) (which, under the present conditions,

may also be viewed as an Eulerian equation for the dis-

persed phase [8])

DV V i

Dt
¼� f

sp
ð bU �

i � bV iÞ � � � vj
ovi
oxj

� . ð9Þ
Here DV

Dt ¼ o
ot þ V j

o
oxj
, the notation �� denotes the

ensemble average associated with the dispersed phase,

and V i ð¼ � bV i �Þ and vi are the particle mean and

fluctuating velocities, respectively. For a homogeneous

dispersed phase, it can be shown [6] that the last corre-

lation in (9) vanishes. Then, substituting from (1) for

the carrier-phase mean velocity (assuming U �
i ’ Ui)

shows that Vi = Ui is a solution to (9) for the homoge-

neous shear flow. In contrast, substituting (2) in (9) indi-

cates that Vi = Ui is not a solution for the particle mean

velocity in plane strain and axisymmetric flows. This in-

deed complicates the analysis for these flows and limits

our discussion to small particle Reynolds numbers for

which we can assume f ’ 1 to a good approximation.

Under this condition, by considering one-way coupling

only and assuming that the initial fluctuating velocity

of the dispersed phase is isotropic, Barré et al. [6] show

that the particle mean velocity in plane strain axisym-

metric flows can be described as Va = ra(t)xa, where [7]

raðtÞ ¼
ðba � V 0

a;aÞga expðgatÞ � ðga � V 0
a;aÞba expðbatÞ

ðba � V 0
a;aÞ expðgatÞ � ðga � V 0

a;aÞ expðbatÞ
;

ð10Þ

ba ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4U a;asp

p
2sp

; ga ¼
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4U a;asp

p
2sp

;

ð11Þ

for 1 + 4Ua,asp > 0,

raðtÞ ¼
V 0

a;a � V 0
a;a þ 1

2sp

� �
t

2sp

1þ V 0
a;a þ 1

2sp

� �
t

; ð12Þ

for 1 + 4Ua,asp = 0, and

raðtÞ ¼
2xspV 0

a;a � ðV 0
a;a � 2U a;aÞ tanðxtÞ

2xsp þ ð1þ 2spV 0
a;aÞ tanðxtÞ

; ð13Þ

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1þ 4U a;aspj

p
2sp

ð14Þ

for 1 + 4Ua,asp < 0. Here V 0
a;a is the initial value of ra(t),

and in our simulations, we have used

V 0
a;a ¼

1

2sp
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4U a;asp

p� �
; when U a;a P 0;

U a;a; otherwise:

8<
:

ð15Þ
The above discussion assumes the homogeneity of the

flow, valid only under certain conditions which can be

determined by considering the transport equation for

the carrier-phase fluctuating velocity

oui
ot

þ Ui;juj þ Uj;mxm
oui
oxj

¼ � op
oxi

þ 1

Re0

o2ui
oxj oxj

� oðuiuj � huiujiÞ
oxj

; ð16Þ
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where we have substituted Ui = Ui,jxj, Ui,j = oUi/oxj.

For simplicity, here we have dropped the two-way cou-

pling term, however, it can be shown that for homoge-

neous shear flow the following discussion is also

applicable with the inclusion of this term (see also [9]).

The dependency on the coordinates xi is explicit in

(16). To remove this dependency, we apply the coordi-

nate transformation

ni ¼ BijðtÞxj; ð17Þ
Table 1

Parameter values considered in simulations of set I for

homogeneous shear flow with monosize particles

Case Um sp Np · 10�5

SM1 0 0.5 1.0

SM2 0.25 0.5 3.33

SM3 0.5 0.5 6.67

SM4 0.25 1.0 1.19

Fig. 1. Temporal evolution of fluid Reynolds stresses for

homogeneous shear flow with monosize particles.
to obtain

oui
ot

þ dBmnðtÞ
dt

þ BmjðtÞUj;n

� �
oui
onm

xn

¼ �Bmi
op
onm

þ 1

Re0
BmjBnj

o2ui
onm onn

� Bmj
oðuiuj � huiujiÞ

onm
� Ui;juj: ð18Þ

Now, for constant mean velocity gradients, the depen-

dency on xi can be eliminated by requiring that

dBmnðtÞ
dt

þ BmjðtÞUj;n ¼ 0. ð19Þ

Then, with the mean velocity given by (1) and (2), we

find that

BijðtÞ ¼
1 �U 1;2t 0

0 1 0

0 0 1

0
B@

1
CA; ð20Þ

for the homogeneous shear flow, and

BijðtÞ¼
B0
11 expð�U 1;1tÞ 0 0

0 B0
22 expðU 2;2tÞ 0

0 0 B0
33 expð�U 3;3tÞ

0
B@

1
CA.

ð21Þ
Fig. 2. Temporal evolution of (a) viscous dissipation rate and

(b) particle Reynolds number for homogeneous shear flow with

monosize particles.



Fig. 4. Particle size distribution for polydispersed homoge-

neous shear case.
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for the plane strain and axisymmetric flows with their

respective Ua,a values. Here the superscript 0 indicates

the initial value, i.e. B0
ij ¼ Bijð0Þ. Thus, the calculation

of the fluid fluctuating velocity in the moving coordinate

ni does not depend on the coordinates and any statistics

of ui remains unchanged with respect to ni. As a result,

the carrier phase is homogeneous in the moving

coordinate.

Applying the transformation to the particle momen-

tum equation we obtain

dvi
dt

¼ f
sp

ðu�i � viÞ � V i;jvj; ð22Þ

where for the axisymmetric flows f = 1 is used. For a

(spatially) constant particle mean velocity gradient, the

right-hand side of this equation does not show any

dependency on position. Therefore, if the initial particle

fluctuating velocity is homogeneous, the evolution of vi
is independent of ni and the turbulence remains homoge-

neous. In the shear flow, the particle mean velocity is

also constant in time and the same as that of the fluid,

thus the moving coordinate (and the homogenous

domain associated with that) evolves with the same rate

for both phases. For the plane strain and axisymmetric
Fig. 3. Temporal evolution of (a) particle Reynolds stresses and (b)

homogeneous shear flow with monosize particles.
flows, however, the particle phase evolves with a differ-

ent rate than that of the carrier phase. In fact, Barré

et al. [6] show that the size of the particle domain de-

creases in time due to the ‘‘compressibility’’ effect dem-

onstrated by the mean velocity of the dispersed phase.

For the homogeneous shear flow, we simply solve (22)

in the moving coordinate system. For the homogeneous
cross-correlation of velocity fluctuations of the two phases for
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plane strain and axisymmetric flows, the fluid fluctuating

velocity ui is calculated in the coordinate system

O � n1n2n3 and, with a priori knowledge of the mean

velocity Ui, the instantaneous fluid velocity can be calcu-

lated using bU i ¼ Ui þ ui. The instantaneous particle

velocity bV i is directly obtained from solving Lagrangian

particle equation (8) in the inertial coordinate system

O � x1x2x3 and the corresponding fluctuating particle

velocity vi is calculated by vi ¼ bV i � V i. The computa-

tional domain in the O � n1n2n3 coordinate system is
~n 2 ½0; 2p� � ½0; 2p� � ½0; 2p�. To ensure that fast Fourier

transform (FFT) routines can be applied, this computa-

tional domain is fixed during the simulation.
3. Simulations and statistics

Five sets of simulations are considered: one for each

plane strain or axisymmetric flows and two for shear

flow. All the simulations are performed using a Fourier

pseudospectral method and periodic boundary condi-

tions are implemented for both phases. The Lagrangian
Fig. 5. Temporal variation of particle Reynolds number for

homogeneous shear flow with polydispersed particles.
equations for the particles are integrated in time using a

second-order accurate Adams–Bashforth method. To

evaluate the carrier-phase variables at the particle loca-

tion a fourth-order accurate Lagrange polynomial inter-

polation scheme is used.
Fig. 6. Temporal evolution of fluid Reynolds stresses for

homogeneous shear flow, based on all particle sizes.

Fig. 7. Temporal evolution of viscous dissipation rate for

homogeneous shear flow, based on all particle sizes.
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3.1. Homogeneous shear flow

The simulations of homogeneous shear flow are di-

rectly started from a random isotropic velocity field

for the carrier phase, seeded with particles which are dis-

tributed randomly with the same velocity as that of their

surrounding fluid elements. The mean velocity gradient

is S = U1,2 = V1,2 = 2, and both phases are simulated

on a moving grid which continuously deforms with the

mean velocity. In order to allow the simulations to pro-

gress for a substantial time, it is necessary to remesh the

grid at regular time intervals [10]. The simulations are

continued until the length scales of turbulence become

too large to be accurately resolved. The magnitude of

the mean shear and all of the initial gas-phase conditions

are held constant in all the simulations.

Two different sets of simulations are considered for

the homogeneous shear flow. The first set includes sim-

ulations of monosize particles at various values for the

particle time constant and mass loading ratio (Um,

defined as the ratio of the mass of the particles and

the mass of the fluid). All the simulations of this set
Fig. 8. Temporal evolution of particle Reynolds stresses for homoge

(b) SP2, and (c) SP3.
are performed using 963 collocation points, with

qp = 721.8 and Re0 = 200. A listing of the simulation

parameters along with the total number of particles

(Np) used for each case, is given in Table 1. Here,

Um = 0 refers to a case with one-way coupling. The sim-

ulations of Table 1 can be used to investigate the effects

of the mass loading ratio and the particle time constant.

The statistics generated from these simulations, are

presented in Figs. 1. Since a modified drag coefficient

is used for the simulations of homogeneous shear flow,

in Fig. 2b we provide the temporal variation of the mean

particle Reynolds number �Rep� to be used for the

calculation of the coefficient f in Eq. (8).

The temporal variation of various Reynolds stresses

in the homogeneous shear flow can be explained by con-

sidering their transport equations. For the carrier phase,

these equations can be stated as [1]

o

ot
� u21 �¼� 2 � u1u2 � U 1;2 �

2

3
�

� 2Um

sp
ð� u21 � � � u1v1 �Þ þP11; ð23Þ
neous shear flow with polydispersed particles for cases (a) SP1,
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o

ot
� u22 � ¼ � 2

3
�� 2Um

sp
ð� u22 � � � u2v2 �Þ þP22;

ð24Þ

o

ot
� u23 � ¼ � 2

3
�� 2Um

sp
ð� u23 � � � u3v3 �Þ þP33;

ð25Þ

o

ot
� u1u2 � ¼ � � u22 � U 1;2 �

Um

sp
ð2 � u1u2 �

� � u1v2 � � � u2v1 �Þ þP12; ð26Þ

where

Pij ¼ wij � �ij �
2

3
�dij

� �
; wij ¼ p

oui
oxj

þ ouj
oxi

� �� �
;

�ij ¼
2

Re0

oui
oxl

ouj
oxl

� �
. ð27Þ

Here, � and wij are, respectively, the isotropic rate of dis-

sipation and the pressure strain-rate correlation. Notice

that, the terms involving the derivatives of the fluid

velocity can only be calculated by Eulerian averaging.
Fig. 9. Temporal evolution of cross-correlation of fluctuating velociti

cases (a) SP1, (b) SP2, and (c) SP3.
Eqs. (23)–(26) can also represent the transport equations

for the Reynolds stresses of the dispersed phase by

replacing ui with vi everywhere except in the fluid-

particle velocity correlations �uivj� which remain the

same. Also, for the dispersed phase Um � 1, � � 0, and

Pij � 0.

Since the simulations are started with an isotropic

velocity field, there is no initial shear component for

the Reynolds stress. As a result, the production term

(�2�u1u2�U1,2) is initially zero and, according to

(23), the streamwise component of the fluid Reynolds

stress decays for 0 6 St < � 2. During this time interval,

as (26) indicates, a shear component is produced due to

the presence of the normal Reynolds stress ð� u22 �Þ in
the cross-stream direction. This in turn, as witnessed in

Fig. 1, causes the normal Reynolds stress in the stream-

wise direction to grow. The transfer of energy from the

streamwise component, through the pressure strain-rate

correlation, then results in the growth of the normal com-

ponents in the cross-stream and spanwise directions as

well. The rate of growth, however, depends on the mass

loading ratio and is decreased due to the drag. This is

also true for the particle Reynolds stresses and the
es for homogeneous shear flow with polydispersed particles for



Table 2

Parameter values considered in the simulations of the plane

strain flow

Case sp V 0
1;1 V 0

2;2 V 0
3;3 Np · 10�5

PS1 0.112 0.686 �0.739 0 1.2

PS2 0.225 0.645 �0.739 0 1.2

PS3 0.372 0.603 �0.739 0 1.2

PS4 0.434 0.588 �0.739 0 1.2

Fig. 10. Temporal evolution of (a) fluid Reynolds stresses and

(b) viscous dissipation rate for homogeneous plane strain flow.
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cross-correlation of the fluctuating velocities of the two

phases (Fig. 3). The effect of the particle time constant

is clearly observed by comparing the variation of �vi
vj� for cases SM2 and SM4 in Fig. 3a. It is noted that

there is a peak in the variation of �v1v1�, the extent

of which increases with the increase of the particle time

constant. Although the initial Reynolds stresses of the

particle phase are also isotropic, there is no viscous dissi-

pation involved in this phase and the shear component

grows much faster than that in the fluid phase, during

the early stages. This increases the rate of production

of the streamwise normal Reynolds stress and results in

the increase of this component. After a short initial time,

however, the difference in the velocities of the two phases

increases and the drag term becomes more effective in

decreasing the normal Reynolds stresses of the dispersed

phase. Notice that there is no mechanism similar to

pressure of the fluid to transfer the energy from the

streamwise direction to other directions. A more modest

distribution of energy is accomplished by drag.

The second set of simulations considers ‘‘polydis-

persed’’ particles with qp = 1000 and Re0 = 200. For

these simulations the particle size distribution is Gauss-

ian with a standard deviation of 0.15 and a mean value

of �sp� = 0.3. To avoid too small or too large parti-

cles, the distribution is bounded by 0.15 6 sp 6 0.45 as

shown in Fig. 4. One case with one-way coupling

(Um = 0, denoted as SP1) and two cases with two-way

coupling at Um = 0.2 and 0.6 (denoted as SP2 and SP3,

respectively) are considered. The simulations of set II

are performed on 1283 grid points with Np = 9.44 · 105

for SP1 and SP2, and Np = 2.83 · 106 for SP3. These

simulations are primarily designed for the assessment

of statistical models for polydispersed particles. When

using such models, the common practice is to divide

the entire range of the particle size into smaller regions,

each represented by an average particle time constant

(or size). Here, we provide statistics for five different

regions as indicated in Fig. 4 by I–V. The statistics in

each region is calculated using the particles whose time

constant is located within that region. For reference,

we have also considered the statistics calculated based

on all the particles.

The temporal variation of the particle Reynolds

number is shown in Fig. 5 for all of the cases and various

particle size ranges. As expected, for each case the parti-

cle Reynolds number increases with the increase of the

particle size. A close inspection of the results shown in

Fig. 5, indicates that the statistics calculated based on

all the particles (indicated by ‘‘All’’ in the figure) is vir-

tually the same as that calculated using only the particles

in the central region III. Further analysis of the results

revealed that this is also the case for other statistics. In

the following Figs. 8 and 9 we do not show the statistics

calculated based on all of the particles as they are well

represented by the particles of region III.
Figs. 6 and 7 provide the information pertaining to

the carrier-phase Reynolds stresses and viscous dissipa-

tion rate, respectively. It should be emphasized that

the fluid Reynolds stresses are calculated based on the

velocity of the fluid at the particle location (shown by

the superscript * in the previous section). An analysis

of the results indicated that the fluid Reynolds stresses

for various particle regions are very close, thus here we

only present the statistics calculated using all of the par-

ticles. The particle Reynolds stress and the fluid-particle

correlations, however, are directly affected by the size of

the particles and are presented separately for various

regions in Figs. 8 and 9. The general behavior of the
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statistics in set II is analogous to that observed in set I

and may be explained similarly. It should be noted that

the particle time constants are smaller for set II and, by

using a higher resolution, we have been able to continue

the simulations of this set for a longer time.

3.2. Homogeneous plane strain flow

The initial conditions for the plane strain flow simu-

lations are obtained by performing simulations of decay-

ing turbulence. The initial (random) velocity field for the

carrier phase, in decaying simulations, is generated in

the Fourier space. The computational domain is elon-

gated (shortened) in the direction of positive (negative)

mean strain rates during plane strain flow simulations.

To allow the simulations to continue for a longer time,

we implement a predistorted initial mesh with the aspect

ratio 1/2:2:1 ðB0
11 ¼ 2; B0

22 ¼ 1=2; B0
33 ¼ 1Þ. This aspect

ratio is kept the same during the decaying simulations.

For the plane strain simulations this initial aspect ratio

gradually evolves into 2:1/2:1 (B11 = 1/2,B22 = 2,

B33 = 1) at the final time when the reference total strain

c = exp(St) reaches approximately 4. The initial turbu-

lence kinetic energy and its dissipation rate (as deter-
Fig. 11. Temporal evolution of (a) particle Reynolds stresses and (b)

homogeneous plane strain flow.
mined at the end of the decaying simulations) for the

plane strain simulations are k = huiuii/2 = 0.097 and

� = 0.0857, respectively. To initiate the plane strain flow

simulations, the carrier phase mean velocity gradient

with S = U1,1 = �U2,2 = 0.739 is imposed and the parti-

cles are distributed randomly with the same fluctuating

velocity as that of their surrounding fluid elements.

The initial mean velocity gradient of the dispersed phase

is imposed as

V i;jð0Þ ¼
b1 0 0

0 �S 0

0 0 0

0
B@

1
CA; ð28Þ

where b1, given by (11) for a = 1, is the asymptotic mean

velocity gradient for the dispersed phase in the x1 direc-

tion and does not change in time [6]. The initial mean

velocity gradient in the x2 direction, however, is not

the asymptotic value and the mean velocity gradient in

this direction evolves in time according to (10) with

a = 2.

All the simulations of the plane strain flow are per-

formed using 1603 collocation points with the total num-

ber of particles as shown in Table 2. Also, for all of the
cross-correlation of velocity fluctuations of the two phases for
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cases qp = 721.8 and Re0 = 536.1. The statistics gener-

ated from the simulations of the plane strain flow are

presented in Figs. 10 and 11. Only the statistics of inter-

est in the assessment of statistical/stochastic models are

discussed here. These include the carrier phase Reynolds

stresses �uiuj� and the viscous dissipation rate � in Fig.

10. Notice that only one-way coupling is considered and

the fluid statistics remain the same for all of the cases.

The information provided in Fig. 10 may be utilized

for the assessment of turbulence models for the fluid

phase, or it may be considered as a direct input to the

models so that one can focus on the assessment of the

models for the dispersed phase. In the former approach,

the data at an early time are treated as the initial condi-

tions and models are required for the prediction of

�uiuj� and � in later times (see e.g. [1]). In the latter

approach, the data from Fig. 10 are used as they are

presented here and models are needed for the prediction

of the dispersed phase Reynolds stresses �vivj�. This

process usually requires (explicitly or implicitly) the

calculation of the cross-correlations of the fluid and par-

ticle fluctuating velocities �uivj�. This information is

provided in Fig. 11.

3.3. Homogeneous axisymmetric flows

We have recently conducted DNS of homogeneous,

axisymmetric contraction and expansion turbulent flows

laden with solid particles. The results are reported in [7]

in a format applicable for model validation and will not

be presented here for brevity. The numerical procedure

is very similar to that adopted in [6], however, only the

carrier phase is simulated during the decaying simula-

tions of axisymmetric flows. The particles are introduced

into the flow field obtained at the end of the decaying

simulations, and are randomly distributed with a zero

velocity relative to the local fluid. All the simulations

are conducted with Re0 = 232.6, qp = 721.8, and

Np = 1.2 · 105 on 1283 collocation grid points.
4. Conclusions

A comprehensive data bank from numerical

simulation of homogeneous particle-laden turbulent

flows, which can be used for the assessment of various

stochastic/statistical models, is reported. Statistics from

the simulations of homogeneous shear flow and homo-

geneous plane strain flow are presented, while for

the homogeneous axisymmetric case we refer to our

previous works.

For homogeneous shear flow we consider two sets of

simulations for monodispersed and polydispersed partic-

ulate phase. For the first set, we present four cases having

different mass loading ratios and particle time constants.

The particle Reynolds stresses for the dispersed phase
and cross-correlation of the fluctuating velocities of the

two phases show similar behavior. The rate of produc-

tion of streamwise normal stresses in the particle phase

is higher than that in the fluid phase due to the larger

growth rate of the shear component as a result of the

absence of any viscous dissipation in the dispersed phase.

In the polydispersed set we consider three cases with

different values of particle mass loading. In order to

study the effect of droplet size distribution, we consider

a Gaussian distribution and divide the entire range into

five subranges, each represented by an average particle

time constant. The analysis of the results reveal that

the statistics based on all of the particles is the same as

that calculated using particles in the region centered

around the mean particle size. The fluid Reynolds stres-

ses for the various particle regions are very close,

whereas the particle Reynolds stresses and fluid-particle

correlations exhibit strong dependence on the particle

size. The qualitative behavior of the statistics presented

for polydispersed set is similar to the monodispersed set.

For the plane strain flow we analyze cases with one-

way coupling but with various particle time constants.

The carrier phase Reynolds stresses and viscous dissipa-

tion remain the same for all the four cases considered.

The above quantities may be utilized for assessing vari-

ous turbulence models for the fluid phase or as input

parameters for assessment of dispersed phase models.

The dispersed phase Reynolds stresses and cross-

correlation of the two phases, which would serve as

the benchmark for the accuracy of the dispersed phase

models, are also presented.
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